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ANTIPLANE DYNAMICAL CONTACT PROBLEM FOR AN ELECTROELASTIC LAYER* 

O.D. PRYAKHINA and O.M. TUKODOVA 

The antiplane dynamic contact problem of the excitation of a semibounded 
electroelastic layer with a lower boundary sharply constricted by a single 
electrode as the simplest transformer of electroelastic waves is con- 
sidered. The electrode is modelled by an absolutely rigid polar stamp. 
In the region of contact between the electrode and the medium, the electric 
potential and the amplitudes of the shear displacements are given, and 
outside this region the surface is free from stress and normal component 
of the magnetic induction is equal to zero. 

One of the approaches to studying the propagation laws for electro- 
elastic shear waves in a medium and on a surface, where this approach is 
based on the use of the method of fictitious absorption is proposed. A 
comparative analysis of the behaviour of the basic characteristics of the 
problem for the coupled and uncoupled problems is given, and the behaviour 
of the amplitude-frequency dependence on the electrode width and the 
oscillation frequency is studied. 

1. Let the medium occupy the region --oo <x, z,<oo, Ogy<h. As an electroelastic 
material, we consider an XY-cut of piesoelectric crystals of the 6mm hexagonal crystal SYUP 
metry class and a piezoelectric ceramic polarized along the s-axis. This case corresponds to 
the excitation of a shear surface waves w,(x,y)e-'"'. 

The propagation of electroelastic shear waves in the quasistatic approximation for the 

*Prikl.Matem.Mekhan.,52,5,844-849,1988 
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materials under consideration, is described by the following system of equations in dimension- 
less amplitude parameters (the factor e-'O' that is common to all the characteristic is 
omitted here) : 

Aw + eAcp -+ Ww = 0, ehw - EA(P = 0 (1.1) 

A = 31’ + a,“, w = w (51, x2), cp = q (x,, x2) 

Let the mechanical loading '~(2~) and the electric induction d(x,) be given on the 
surface of the medium (x2 = 1): 

51 = 1, &w + e&q = z (x1), e&w - e8,cp = d (x1) 62) 

and on the lower face of the layer (x, = 0) the amplitudes of the shear displacements and of 
the electric potential become zero 

2, = 0, w=rp=o 

e = e,,llc,,E, E = e,,Wc,,E, W == p&Q,,= 

5 = &I, y = hx,, ‘P,, = hltp, w. = hw, x0 = vppE, 

d, = c,,“dil 

U-3) 

cIIE, e,,, ells are respectively elastic, piezoelectric and dielectric constants, o is the oscil- 
lation frequency, h is the thickness of the layer, p is the material density cp, d,w,z are 
the amplitudes of, respectively, the electric potential and induction, the shear displacement 
and the stress (qa, w,,, rO, d, are dimensional qantities), 1 is a normalizing factor that has 
the dimensions of an electric field, x, y, z is a Cartesian system of coordinates, and 
a,, 13, denote differentiation with respect to x1 and x2, respectively. 

The solution of (1.1) with conditions (1.2) and (1.3) is constructed using the Fourier 
transform method and takes the form 

ti (a,xJ= 1 u(r,,~,)e'"~~dr,, Q(a)= 5 q(rC1)eiaxl dx, 
-,m -m 

II = {w, cp}, q = {t, d}, U = {W, @}, Q = {I”, D} 

(1.4) 

K,,=K,,+K,,, K,,=$K,,-& 

(1.5) 

(1.6) 

The quantity k,' is the square of the electromechanical coupling shear coefficient. 
Applying an inverse Fourier transformation to (1.4), we obtain an integral representation 

of the solution of the problem of the propagation of electroelastic shear waves in the layer 

k (x1, JJ = & j K (a, 5%) e-‘“‘~ da 

The contour o is chosen in accordance with the radiation conditions in /l/. 

2. Representation (1.7) gives an integral equation for the initial contact problem of 
the excitation of waves in an unbounded electroelastic layer by a single electrode of width 
2b, when on the surface of the medium 

x2= 1, u (Xl, 1) = u (x,), 1 I1 1 -z< a vJ2.1) 

q (x1, 1) = 0, 1 x1 1 > a; a = b/h 

52 = 0, u (21, 0) = 0, I J* I < 00 

representation of the first kind with respect to the unknown Thus, we have an integral 
vector q 

s k(x, - E) q(E) dE= u(:rr), 1 r1 1 Q a (2.2) 
--o 
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k (~3 =& s K (a) e-+ da, K(a) = K (a, 1) 
0 

The elements ofthematrix K(a) are regular everywhere on the real axis, with,the excep- 
tion of the following poles which are the same for all functions: U = &Pk (k = 192, . . . . n), 
which are determined from (1.5) with x8 = 1. 

As jaj+oo, we have the following asymptotic representation:' 

K,j (a) = P 1 a 1-l Iail + 0 QP)], i, j = 1, 2 

For piezoelectric materials of class 6mm, the coefficients al, = 1, a,,= am=ee-I, a2( = --e-l, 
With these properties for the kernel, system (2.2) is uniquely soluble in La(--a,a), a> 

1. The uniqueness criteria are proved by analogy with /l/. Without loss of generality, we 
ivill assume that 

w (.z~) = Ale-iqXl, 'p (x1) = Aae-i~rl, Im q = 0 

We can construct the solution of (2.2) using the 
problems of the antiplane shear of an elastic layer. 
an integral equation 

J s(xl-- E) t (E) dt = e-iq.rl, 
--D 

s (Xl) = & s S (a) e-i@*: da 
0 

solution of the static and dynamic 
Both these problems reduce to solving 

j .rl / < a (2.3) 

In the dynamics 
___- 

S(a)=th1/a2-kk2/l/a2-kk2, k2T:C? 

In the statics 8 (a) = th ala (8 = 0). 

(2.4) 

Let t(xl) be a solution of (2.3) with kernel (2.4) , in which k” = Q2/(1 i- x2), while t, (xl) 
corresponds to the solution for zero frequency Q. Then the solution of (2.2j will be deter- 
mined by the relationships 

d (5J = @A, - EA,)&, (5J (2.5) 

z (x1) = A,& (x1) - ee-Id (x,) (2.6) 

In statics, the contour u coincides with the real axis. 
The solution t(xl) of (2.3), (2.4) is constructed in /2/ by the method of fictitious 

absorption, which is also used in this paper. Another form of solution is given in /3/. The 
solution t,(x,) is constructed in closed form in /4/. 

It is obvious that the amplitude of the electric displacement (induction) (2.5), unlike 
the amplitude of the shear stresses (2.6) , does not depend on the frequency Q. 

In the formulae given in /2-4/, the required functions z(x,) and d(xl). have singular- -- 
ities on the boundary 1/x1&a. 

3. In calculating structures using the coupling of electric and mechanical fields, in 
particular, structures on surface acoustic waves, we often neglect the contribution of elastic 
waves to the electric induction because of the smallness of the electromechanical coupling 
coefficient. In this case, the solution of the problem has the form 

d (x1) = --EA&, (x1) (3.1) 

z (x1) = A,& (x1) + e.%t, k) (3.2) 

Here t,(x,) is a solution of (2.3) with kernel (2.4) , that is, a solution of thedynami- 
cal problem of the antiplane shear of an eleastic layer. 

with the given null potential (A, = 0) the shear stresses will not dependonthe electric 
properties of the medium and the behaviour of 7(x1) will be identical with the corresponding 
characteristic of the purely elastic problem, where d(x,)= 0. With A,#O, the function 

'5 (Xl) will be determined by the superposition of solutions of the static and dynamic problems 
of elasticity theory. The amplitude of the electric induction for the uncoupled problem will, 
as before, remain a real quantity and will not depend on the frequency. 

In Figs.1 and 2 we show the dependence of Rez and d on z1 for coppled (the solid lines) 
and uncoupled (the dashed lines) electromechanical problems with A, = A, = 1 (q = 0). S2 = 4, 
a = 5. Curves 1, 2, 3 correspond to Cd S (k, = 0.19), ZnO (k, = 0.32) and TsTS-19 (k, = 0.58). 
In Fig.1, the behaviour of Rez(x,) is given, for comparison, by the dashed line for the 
purely elastic problem, which corresponds to (3.2) with A, = 1, A, = 0 ('1 = 0). The divergence 
between the distribution of contact stresses and the electric induction in the contact zone 
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for materials with a different electromechanical coupling coefficient increases as h', 
increases. For piezoelectric crystals that have a small electromechanical coupling coef- 
ficient we can, as for Cd S, neglect the contribution of the elastic waves to the electric 
induction, which considerably simplifies the construction of solutions to such problems. 

Z Y Xl 

Fig.1 

4. On the real axis K,f (a) have the same poles a = a@) for all the functions, and 
these poles correspond to the value of the wave number of the surface wave propagating on 
the surface of the piezoelectric. These poles also determine the dispersion curves of the 
problem 

a = IQ2 (1 -;- x2)-l - 39 (112 + n)2rl~, n==O,l,... 

which at any frequency enable us to find the number and phase velocities of the surface waves 
that arise 

V = I/~lpQla = V&2/a 

(V, is the velocity of transverse volume waves ignoring the piezoelectric effect). 
The locking frequencies (the frequencies at which standing waves are formed with c. - 0 

/5/) are 
(2 = 1/l + x2 (n/2 + nn), n = 0, 1, . . 

It is obvious that the parameter x2 introduces a correction to the phase velocity of 
propagation of the shear waves , which leads to an increase in this phase velocity. We note 
that the dispersion curves for the uncoupled problem and the corresponding elastic problem 
coincide. 

5. knowing the distribution of shear stresses and of the electric induction in the 
contact region we can determine the electroelastic wave field that arises in the medium and 
on the surface. After substituting (1.5), (2.5) and (2.6) into (1.7), we have 

s $$ T (a) e-iasi da 

(I 

m 

cp (x1, x2) = $ w (xl, x2) - J+$=$ ’ s L+ T, (a) e-iaxl da 
-m 

(5.9 

The shear wave is piesoactive and, together with the-potential of the electric field, 
it is described by an oscillating function. 

In the uncoupled problem 

(5.2) 

It is obvious that in the case of the uncoupled problem the potential is a decreasing 
function of 51 (as in the static elastic case), and the shear wave ceases to be piezoactive. 

We note that T (a), T,(a), T, (a) are the Fourier transforms of the functions t(zr), 1,(r,), 
t* (4 respectively. 

The integrals in (5.1) and (5.2) are calculated by integrating over the rectangular 
contour a by analogy with /6/. In the far zone, it is more convenient to use the asymptotic 
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formulae. 
Fig.3 shows the dependence of Rew on x1 for CdS (k, = 

Reu, 0.19, 52 = 4, a = 5, A, = A, = 1). The solid curve is obtained 

u.2 
by integration using (5.1) along the contour of u, and the 
dashed line is obtained using the theory of residues (the 

u 
integrand in (5.1) has a single pole for the given frequency 
a,-3.6). It is obvious that with x1>6.5 it is more con- 

-uz venient to calculate the wave field using asymptotic formulae. 

Fig.3 
We note that in the region of contact between the electrode 
and the medium the values of w, cp are close to unity. The 
maximum error of about 10% occurs at the edge of the electrode. 

6. we now consider the purely "electrical" problem, where the following boundary con- 
ditions are specified on the surface of the medium in place of conditions (2.1): 

"z=l, (P(s,,l)=cp(Q IZII<. 

a' (x1) = 0, 1 x1 1 > a; 'c (SJ = 0, --oo <x1 < 00 

In this case we have an integral equation for the unknown function d(xJ: 

(6.1) 

j k(x,-- E)dE)dE=cF(xA lx~l<a 
-a 

k(r,)=; i K,, (a) e-iaXg da 

tha 
KIs(a)=d[&%-a) 

(6.2) 

The solution of (6.2) for cp(x,) = Ae-+I also has the form given in /2/, where the 
function K,,(a) is written in the form 

where Zk, p# (k = 1, 2, . . .) n) are respectively real and complex zeros,and the poles of K,,(a) 
located above the oontour a. 

The electroelastic wave field will be described by (1.71, which, taking account of (6.1) 
after determining d (x1), we can write in the form 

w (Tp Xi) = -& s 2 D (a) e-is% da (6.3) 
0 

(6.4) 

Fig.4 shows the dependence of Red on x1 for various widths of the electrode, measured 
in terms of the wavelength 1L(a = X,h/2,h/4) with 52 = 4 for TsTS-19 (curves 1, 2, 3). We 
note that in this case d(x,) is an oscillating function and depends on the function Q, unlike 
the corresponding characteristic of the electromechanical problem (Fig.2). 

Red 

-iv 

-40 

Fig.4 Fig.5 

Fig.5 shows the behaviour of the amplitude functions w (XI, 1) and cp (x1, 1) with 51) = 1, 
Q = 4, a = i (A = 1, q = 0) for ZnO. In the region of contact between the electrode and the 
medium, the quantity cp(q,1) is close to unity, that is, to the specified potentialamplitude, 
and the quantity w(xl, 1) is close to zero. The maximum error is on the edgeoftheelectrode 
(of the order of 20% for a = 1) and decreases as the width 2a of the electrode increases 
(for a = 5 the error near the edge is 10%). 

The author thanks 1.1. Vorovich for discussing this paper and for useful remarks. 
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ASYMPTOTIC PROPERTIES OF THE APPROXIMATE SOLUTION OF 
A CLASS OF DUAL INTEGRAL EQUATIONS* 

S.M. AIZIKOVICH and I.S. TRUBCHIK 

An investigation is presented of dual integral equations generated by 
various plane contact problems:astrip resting without friction on a 
rigid base (Problem 11, a strip clamped along the base (Problem 2), a 
wedge with a clamped face (Problem 3), and also be axisymmetric problems 
relating to the action of a ring-shaped stamp on a half-space (Problem 4), 
and the interaction of an elastic bandage with an elastic cylinder /l/ 
(Problem 5). The strip, wedge, half-space and cylinder may be uniform, 
laminar of continuously inhomogeneous. Analogous equations in terms of 
Laplace transforms are obtained in problems of coupled thermo-elasticity 
and consolidation theory of water-saturated media for the bodies listed 
here /2/. 

Themethod described in /3/ is generalized to construct solutions of 
the above problems. Well-posedness and solvability classes areestablished 
for the equations, proving that the approximate method proposed here is 
asymptotic in both directions with respect to a characteristic geometric 
parameter h= H/a (H is the thickness of the strip and a is half the 
thickness of the stamp) in Problems 1 and 2, or h= Z/In (b/n) (4 and b are 
the distances from the nearest and farthest points at which the stamp 
touches the boundary of the wedge to its vertex) in Problem 3, ?.= 2/ln(b/ 

~)(a is the inner radius of the stamp and b its outer radius) in Problem 

4, k = R/a (R is the radius of the cylinder and a half the thickness of 
the bandage) in Problem 5. In problems of coupled thermo-elasticity and 
consolidation theory i also involves the parameter p of the Laplace 
transform with respect to the time coordinate /2/. The method is illus- 
trated in relation to a contact problem for a strip continuously inhomo- 
geneous in depth. 

1. Statement of the problem. Consider the dual integral equation 

@ (4 ale-iarda=2xg(r), Izl< 1 
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